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ary point distributions. Rai and Anderson [7] presented a
scheme based on an attraction model between points basedA technique to solve the Poisson grid generation equations by

Green’s function related methods has been proposed, with the on analogy with gravitational fields. Brackbill and Saltz-
source terms being purely position dependent. The use of distrib- man [8] solved the variational equations that optimize a
uted singularities in the flow domain coupled with the boundary prespecified quantitative measure of the required grid
element method (BEM) formulation is presented in this paper as a

properties to produce adaptive grids. Anderson [9, 10] firstnatural extension of the Green’s function method. This scheme
developed the analytical relationship between the sourcegreatly simplifies the adaption process. The BEM reduces the dimen-
terms in the Poisson grid generators and grid point cluster-sionality of the given problem by one. Internal grid-point placement

can be achieved for a given boundary distribution by adding contin- ing, opening the way for true adaptive control using elliptic
uous and discrete source terms in the BEM formulation. A distribu- grid generators. Liao and Anderson [11] recently applied
tion of vortex doublets is suggested as a means of controlling grid- concepts from deformation theory, originally proposed by
point placement and grid-line orientation. Examples for sample

Moser [12], to generate grids including a guarantee ofadaption problems are presented and discussed. Q 1996 Academic
uniqueness and existence.Press, Inc.

The conventional approach of generating grids using
Poisson equations is to transform the equations to logical

INTRODUCTION space, resulting in a system where the role of the dependent
and the independent variables has been reversed. With

Grids that adapt to the developing features in flow-fields this idea, the physical coordinates are directly computed
during numerical calculations represent the physics of the and the numerical computation is simplified since the spac-
problem being studied. For problems where unstructured ing in computational space (Dj, Dh) may be set equal to
grids are used, adaption can be accomplished relatively a constant. The discrete form of the transformed Poisson
inexpensively because insertion of additional grid points is equation is greatly simplified by this procedure. The disad-
the most popular way to achieve refinement. For structured vantage of using the transformation to logical space is that
grids, both grid-point motion and refinement schemes are the Poisson equation, linear in physical space, is nonlinear
used. When motion methods are used, the adaption may in computational space. Furthermore, no guarantee of
consume as much as one-third of the total time spent doing uniqueness or existence can be made in general for this
the simulation. For this reason, it is important to develop case.
new methods of grid adaption that may be used more effi- The problems that result from the necessity of computing
ciently. a solution of a nonlinear partial differential equation sug-

Structured meshes can be obtained using a variety of gest that other approaches to computing solutions to the
algebraic or partial differential equation methods. Winslow Poisson equation be explored. In an earlier paper [13], the
[1] used Laplace’s equation to generate smooth grids used Poisson equation was solved in the physical domain, where
in solving the heat equation. Thompson et al. [2] added it remains linear, and the physical coordinates were deter-
source terms to the right-hand side with the goal of proving mined by interpolating for the constant computational co-
control of mesh point location and density in the physical ordinate lines. In the same work, the solution of the Poisson
domain. Barfield [3], Amsden and Hirt [4], and Godunov equation was obtained using Green’s functions and a fur-

ther simplification was made by employing approximationsand Prokopov [5] also solved Poisson related equations to
obtain grids used in digital simulations. Limited success to the Green’s functions in two and three dimensions. In

this paper, the use of Green’s functions is extended bywas attained in achieving desired grid point clustering and
this led to interesting and highly unique research in solving introducing the boundary element formulation in the solu-

tion method and significant reductions in the order of thethis problem. Thomas and Middlecoff [6] developed a
method of controlling interior clustering based on bound- problem are obtained.
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LINEARIZED ADAPTION The choice of P and Q is crucial because these source
functions determine the control of mesh point spacing.

The standard Poisson elliptic grid generation equations Sophisticated methods of specifying the source functions
written with physical coordinates as the independent vari- have been developed when the Thompson scheme is used,
ables are of the form permitting the direct computation of the physical coordi-

nates from Eq. (3). Unfortunately, these formulations can-
=2j 5 P

(1) not be used for the linear problem described here. How-
ever, it is instructive to approximate these source functions=2h 5 Q.
as closely as possible for the linear case. As an example,
the source terms may be approximated (for an x, y alignedThese equations may be integrated over any arbitrary vol-
system) asume to yield the integral or finite-volume form

E
vol

=2j d(vol) 5 R
­ vol

=j ? ds 5 E
vol

Pd(vol). (2) P 5 Q 5
1
w

u=wu. (7)

This formulation shows that the source functions, (P, Q),
If the coordinate system is not aligned with the (x, y)act as sources for the creation of j and h and thus control
system, a more logical definition in general may be writtenthe grid spacing.

In the conventional Thompson scheme, the Poisson
equation is written with the roles of the independent and

P 5
1
w

=w ? =u (8)the dependent variables reversed. When this transforma-
tion is completed, the equations take the form

with a corresponding definition for Q, where the weight
arjj 2 2brjh 1 crhh 5 2J2(Prj 1 Qrh), (3) function, w, may be written

where the quantities a, b, c, and J are given by
w 5 1 1 Au=uu2 (9)

a 5 x2
h 1 y2

h , b 5 xjxh 1 yjyh , c 5 x2
j 1 y2

j ,
(4) and u is some physical quantity like pressure, density, or

J 5 xjyh 2 xhyj an appropriate combination that may be used to cluster
points.and

This system is solved to obtain the values of j and h at
the cell centers. Grid point locations correspond to ther 5 (x, y)T

integer values of j and h and interpolation is necessary to
obtain the new grid point locations. This process is initiatedThe transformation of the original linear equation (Eq.
within the current grid by starting with a grid point whose(1)) from physical space to computational space produces
exact location in the final grid is known (usually the lowera highly nonlinear system of equations that may be directly
left-hand corner point). Layers of cells surrounding thissolved for the physical coordinates. In order to retain lin-
point are scanned for the grid point that is sequentiallyearity in this system, the original system must be retained
next in order. The search path is depicted in Fig. 1. Sincewith the source terms (P, Q) written as functions of (x, y).
the ultimate goal in using the linearized form of the meshWith (P, Q) written as functions of (x, y), the original
generation equations is to reduce the CPU time, it is appro-system is homogeneous and decoupled. We propose to
priate to consider the time required to perform the searchexploit these properties in creating an efficient solution
for target cells. Using the above idea, a grid point is foundtechnique. The homogeneity of the system permits the
in a row in the neighborhood of the initial point. A number,Green’s functions to be very simply obtained. With this
a, exists such that the next grid point can be found afterapproach, the final form of the governing grid generation
visting less than a cells. This implies that the operationequations for a two-dimensional problem may be written
count for this search through the entire domain will be
less than aN, where N is the total number of grid points­2j

­x2 1
­2j

­y2 5 P(x, y),
­2h
­x2 1

­2h
­y2 5 Q(x, y) (5) in the domain. This is an O(N) process.

When a host cell has been located that contains the
for the domain, D, and on the boundary the values of j target point, bilinear interpolation is carried out to fix the
and h are prescribed as point location within this cell. This procedure fixes the

(x, y) values for the point in the computational domain.
Bilinear interpolation requires the solution of a quadraticj 5 j0(x, y), h 5 h0(x, y). (6)
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Solution Using Green’s Functions

The solution of boundary value problems using Green’s
functions is a classical technique (Garabedian [14]). By
way of review, consider the homogeneous, linear PDE,

Lu 5 h(x, y), (11)

subject to appropriate boundary conditions. Define the
Dirac delta function as

d(x 2 x0 , y 2 y0) 5H1 if (x, y) 5 (x0 , y0)

0 otherwise.
(12)

The delta function represents a unit impulse acting at a
given point in the domain. The Green’s function is defined
as the solution of the PDE,

FIG. 1. Search path for grid point location.

LG 5 d(x 2 x0 , y 2 y0). (13)

With this notation, the solution to Eq. (11) is given byequation but produces second-order accuracy. The proce-
dure detailed here is fast, robust, and produces smooth

u(x, y) 5 E E
S

h(x, y)G(x, y : x0 , y0) dx0 dy0 . (14)grids that adapt well to the features of the evolving solu-
tions. Linear interpolation was also attempted but the final
grids were not as smooth, nor did they adapt as accurately The use of Green’s functions requires that a solution be
to the flow quantities defining the desired mesh point distri- computed to the system of equations,
butions.

Conceptually, the idea presented above can easily be
=2jG(x0 , y0 : x, y) 5 d(x 2 x0 , y 2 y0)

(15)extended to three dimensions. In that case, a third equation
=2hG(x0 , y0 : x, y) 5 d(x 2 x0 , y 2 y0),is added to the grid generation equations, (Eq. (1)), re-

sulting in the system
where jG and hG are the Green’s functions at (x, y) for a
unit impulse at (x0 , y0). The discrete system that must be

=2j 5 P solved for the Green’s functions at each point in the do-
main may be written=2h 5 Q (10)

=2z 5 R. hLjujG(x0 , y0 : x, y)] 5 d(x 2 x0 , y 2 y0)
(16)

hLj[hG(x0 , y0 : x, y)] 5 d(x 2 x0 , y 2 y0).
After this system of equations is solved for the computa-
tional coordinates, the search for the host cell proceeds in In this expression, the left side represents an m 3 n matrix,

where m and n are the number of grid points in the x andthe same manner as in the two-dimensional case. However,
the interpolation routine requires modification and the y directions respectively.

An alternative to computing Green’s functions usingprocess of locating a point in a cell is significantly more
difficult. In three dimensions, the volumes of the tetrahedra these methods is to construct analytic approximations to

the Green’s functions. These approximations include log(r)formed by joining the target point and the test cell vertices
is formed. If the sum of these volumes is equal to the and 1/r for two and three dimensions, respectively, and

give close estimates when properly scaled. This approachvolume of the test cell, the point lies within the cell. The
values of the (x, y, z) coordinates of the point are estab- is suggested by the solution techniques applied to irrota-

tional, inviscid, incompressible flow where sources, vorticeslished by linear interpolation in (j, h, z) space. The exten-
sion of bilinear interpolation into three dimensions pro- etc. are superimposed on a free-stream flow. For example,

a point vortex is a unit impulse applied for Green’s functionduces a very complex system and for the purposes of this
paper was not pursued. computation. In two-dimensional problems, Green’s func-
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tions, jG , are written as the sum of two components, jg

and jL , given by

=2jL 5 0 for r $ 0 (17)

jg 5 log S r
ro
D for r # 0, (18)

where the solution for jG is written

jG 5 jL 1 jg for r # r0 (19)

jG 5 jL for r $ r0 . (20)
FIG. 2. Domain for C-grid around an airfoil.

The quantity r0 represents the range of influence of the
unit impulse and this range may be problem dependent.
In general, this is the straight line distance between any to (x, y). Garabedian [14] shows the extension of these
two points in the domain. This forces the Green’s function Green’s functions to several simple domains that are re-
to vanish far away from the location of the impulse. In lated by bilinear mappings through the method of reflec-
this method, the influence functions are directly added to tion. This is identical to the method of images used in
the local value of j. It is then possible to easily avoid grid aerodynamics.
lines overlapping each other by making sure that (to some The application of this approach poses some challenging
level of tolerance): problems because the method of images is not easily ap-

plied to complex domains. Even for a case as simple as a
(1 1 jG(i, j)) , (jG(i 1 1, j)). triangle, the application is cumbersome due to the compli-

cated form of the analytic Green’s function. In view of
this, a simplified Green’s function approximation that con-The Poisson equation is elliptic and no preferred direc-
tains the essential features of the fundamental solutiontion for signal propagation exists. Thus, the distance, r,
justifies investigation. Consider the formis the distance between two points in a smooth, simply-

connected domain that limits the influence of an applied
impulse. For a problem covering the entire n-dimensional

jG 5 jL 1 k log S r
r0
D , (24)space (n . 2), the Green’s function is given by

where the boundary conditions are satisfied by this func-jGreen 5
1

s9n21

1
r n22 , (21)

tion; i.e., the effect of the unit impulse dies down at the
boundary. The boundary conditions can be accounted for
by initially adjusting the boundary points to suit the adap-where s9n21 5 (n 2 2)sn21 , with sn21 the surface area of
tion requirements and basing the remainder of the adap-the (n 2 1)-dimensional unit sphere [14]. For the case of
tion on boundary point final location. This eliminates thean infinite domain, the Euclidean metric,
influence of the interior points on the movement of the
boundary points. Concave domains present a more difficultr 5 Ï(x2 2 x1)2 1 (y2 2 y1)2, (22)
problem. Figure 2 shows a C grid around an airfoil.
Point P1 on the upper surface of the airfoil influencesis the required distance. The presence of boundaries neces-
the point P2 on the lower surface of the airfoil. However,sitate changes in this representation of the Green’s func-
the distance that normally is used in producing the decaytion. Consider the solution to the Laplace equation in the
of this influence is no longer the Euclidean metric asupper half plane, z $ 0. The Green’s function in this case,
used in the previous discussion. Instead, the effect ofis given by
the curvature of the surfaces must be included in the
distance functions.

The effect of having curved boundaries precludes theG 5
1

s9n21

F 1
r n22 2

1

r̃ n22G , (23)
use of the Euclidean metric, except in the case of a branch
cut where smoothness of the grid lines is desired. Some
measure, r, that best describes the influence of points andwhere r is the distance from the point, (x, y), to the point,

(x0 , y0), and r̃ is the distance from the reflection of (x0 , y0) the associated decay of this influence is needed. In the
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FIG. 4. Adaption to a cylindrical shock front.
FIG. 3. Grid adapted to an h-like line.

The approximate Green’s functions are computed as theairfoil case depicted in Fig. 2, the straight line distance
solution proceeds.between P1 and P2 would traverse through the airfoil. A

Grids generated with approximate Green’s functions arelogical redefinition of this metric for the purpose of com-
shown in Figs. 4 and 5. It is apparent that these grids areputing the Green’s function would be to solve the minimal
smooth and well adapted to the discontinuities in thesurface problem that yields the shortest path on a (j, h)
weight function. Figures 6 and 7 show the effect of changingsurface between the two points. As an intuitive equivalent,
r0 . Consistent with the elliptic nature of the generatingLaplace’s equation has been used instead of the above
system, larger values of r0 give smoother results. The mostPDE in this work. First, it can be shown [14] that the
important result, however, is the comparison of CPU timeminimal surface equation transforms into canonial form,
with the standard Thompson scheme shown in Fig. 8.a system of Laplace equations, through a bilinear transfor-
Clearly the time taken by the relaxation method is of themation. Second, the Laplace solution for a given domain
same order as that necessary for the approximate Green’shas already been obtained so no additional effort needs
function method.to be expended to find a suitable distance. Figure 3 shows

This method was applied to three dimensions with suc-a grid around an airfoil that has been adapted using this
cess and results of the computations are shown in Fig. 9scheme.
and Fig. 10. Grids generated with this method are smootherGreat importance is placed on the role of the Laplace
in three dimensions due to the fact that Green’s functionssolution, jL and hL , in the adaption process. Thus, care

must be exercised to preserve the accuracy of the Laplace
solution as the grid points move in time. When a point is
moved to a new location, a bilinear interpolation is used
within the host cell, preserving second-order accuracy. The
same interpolation functions are used to move the La-
place solution for jL and hL to the new point. Thus,
second-order accuracy can be retained in transferring
the flow properties to the new point with very little
additional effort.

After the Green’s functions are computed, they are com-
bined with the weight functions as the source terms P and
Q to produce the final adapted grid:

j(x, y) 5 O
i
O

j
P(x, y)jG(x, y; xij , yij) Vol(i, j)

(25)
h(x, y) 5 O

i
O

j
Q(x, y)jG(x, y; xij , yij) Vol(i, j).

FIG. 5. A shock-like discontinuity.
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FIG. 6. Adaption to a sine wave with r0 5 100 on the scale shown.

FIG. 8. CPU time comparisons for adaption to a sine wave.

behave like 1/r. In two dimensions, the log(r) behavior has
a much larger slope when r changes, leading to larger errors

u 5 u on G1
(27)

in the approximate Green’s functions.

­u
­n

5 q 5 q on G2 .THE BOUNDARY ELEMENT METHOD (BEM)

The boundary element method (BEM) is an interesting
Define the residual (error) in the Poisson computation asextention of the Green’s function method in grid genera-

tion. This technique requires discretization of the surface
R 5 =2u 2 b, R1 5 u 2 u, R2 5 q 2 q. (28)instead of the volume. Application of the BEM to the

Poisson equation is presented below and more complete
With these definitions, the basic integral equation maydetails may be found in Ref. [15].
be writtenConsider the equation

=2u 5 b(x, y), (26) E
V

(Ru*) dV 5 E
G2

R2u* dG 2 E
G1

R1q* dG (29)

where on the boundary, G 5 G1 1 G2 , the boundary condi-
with q* 5 ­u*/­n. The quantity, u*, represents the funda-tions are

FIG. 9. Adaption to a spherical front.FIG. 7. Grid in Fig. 6 with r0 5 12.
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E
V
Sb =2v* 2 v* =2b) dV 5 E

G
b

­v*
­n

2 v*
­b
­nD dG. (34)

If b is harmonic, this expression reduces to

E
V

bu* dV 5 E
G
Sb

­v*
­n

2 v*
­b
­nD dG, (35)

resulting in a pure boundary value problem. The function,
v*, will be the fundamental solution to the biharmonic
equation

=2u* 5 =2(=2v*) 5 =4v* 5 2dDirac . (36)

The v* function for two and three dimensions is given by

FIG. 10. Adaption to a 3D shock.

v*2d 5
r 2

8f Flog S1
rD1 1G , v*3d 5

r
8f

. (37)

mental solution at a point due to a unit impulse at the ith
A further simplification of the solution procedure maypoint. Integration by parts yields

be achieved if the source term in the Poisson equation is
assumed to be harmonic. As an example, consider adaptionE

g
(=2u*)u dV 2 E

V
bu* dG 5 2E

G2

qu* dG

(30)
in the unit square with clustering desired at the lower
boundary. This is easily achieved using a wide variety of
choices for the source functions. In this case, P 5 0 to2 E

G1

qu* dG 1 E
G2

uq* dG 1 E
G1

uq* dG.
cluster to the lower boundary and Q may be written as

When all of the boundary terms are grouped together and
Q 5

1
w

dw
dy

, w 5 1 1 Au=uu2, u 5 tanh(y/c) (38)the effects of P point sources of strength Qk within the
domain are included, the final form of the governing equa-

Q 5 AeBy. (39)tion is obtained in the form

Clearly, neither of these functions is harmonic. The sim-ciui 1 E
G

uq* dG 1 E
V

bu* dV

(31)
plest harmonic function that will work is the straight
line variation

1 OP
k51

(Qku*k 5 E
G

qu* dG.
Q 5 A 2 By.

In this expression, ci 5 u/2f, where u is the angle made When the domain is not the simple unit square, the source
by the boundary at the ith node. For smooth boundaries, function can be transferred to the computational space of
the correct value of u is 0.5. The volume integral is avoided the Laplacian coordinates, (jL , hL) (also harmonic func-
by means of several simplifying assumptions. The easiest tions), where it must be remembered that these functions
way to simplify this equation is to assume that the right- are available during the course of the current computation.
hand side source term in Eq. (26) is harmonic, i.e., A linear function of the Laplacian coordinates is har-

monic. If
=2b 5 0. (32)

P 5 AjL 1 BhL 1 C, =2P 5 a =2jL 1 B =2hL , (40)
This may be accomplished by means of the transformation

where A, B, and C are constants, =2P 5 0, making P
u* 5 =2v* (33) harmonic. In general, a function that is harmonic in the

(x, y) plane can be transformed into computational space
with a restriction on the Laplacian coordinates. Considerand writing Green’s identity in the form
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a harmonic function P. After simplification, the Laplacian
of P can be written

=2
xP(jL , hL) 5 PjLjL

(=jL ? =jL) 1 PhLhL
(=hL ? =hL)

(41)
1 2PjLhL

(=jL ? =hL).

If we also impose the restriction that the functions jL and
hL satisfy the Cauchy–Riemann conditions, then

­jL

­x
­hL

­y
(42)

­jL

­y
5 2

­hL

­x
(43)

and Eq. (40) is substantially simplified. These simplifica-
tions include

=jL ? =hL 5 0

=jL ? =jL 5 =hL ? =hL

and, since FIG. 11. The doublet approximation to f and c.

PjLjL
1 PhLhL

5 0,

metric and not the Euclidian metric. This implies that the
we obtain adaption is being performed in the jL 2 hL space.

A simplification of the current problem can be made by
=2

xP 5 0. (44) setting the source function equal to zero leaving only the
influence of discrete sources.

By transferring the quantities P and Q to the (x, y) domain,
the adaption is also transferred to the relevant regions in Internal Sources
the domain.

Provisions exist for including isolated internal source
terms in the BEM formulation (Eq. (31)). Suppose thatImplementation and Results
clustering is desired at a given point in the region. For a

The BEM can be applied in the present form to several one-dimensional case, this requires definition of a source
important cases in a non-iterative format. Consider the function, f, that depends on the second derivative of a
boundary integral formulation of Eq. (31). This expression weight function. With this interpretation, the source func-
can be written tion is written

cij i 5 jL 2 E
G
Sb

­j*
­n

2 j*
­b
­nD dG 2 OP

l51
(Qlj*l). (45) f 5

wjj

w
,

where the weight function is defined asThe term, jL , is the Laplace solution in the domain, as can
be seen by setting the source term to zero in the integral

w 5 1 1 Au=uu2.relation. The integral represents the influence of a har-
monic source function from the boundary and the summa-
tion is the effect of discrete internal sources. If the source A definition of u and w in this manner produces an

oscillatory f distribution. Typical behavior of this functionfunction, b, is known as a function of x and y, closed form
expressions can be obtained for the integral in Eq. (45). is shown in Fig. 11. It is important to note that f exhibits

a sign change in order to attract grid points from bothIt must be remembered that the distance metric being
used for the Green’s function computation is the Laplacian directions in a given region. A doublet or dipole (Fig. 11)
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FIG. 12. Adaption using 20 doublets along a shock wave. FIG. 13. Grid obtained using a continuous vortex filament.

has the correct behavior and may be used to attract points Using discrete doublets produces interesting results. Figure
to a given location. The term ‘‘doublet’’ is used loosely 14 depicts the effect of placing 30 doublets oriented in the
to describe a system of positive–negative singularities. In horizontal direction along a sine-wave-like discontinuity.
generating a grid, the doublet distribution is determined Figure 15 shows the doublets inclined to the normal to the
from the gradient information as a first step in the grid sinusoidal discontinuity. If such an adaption were to be
generation process and stored for future use. In order to achieved using vortex filaments, it would require that the
orient the doublet along the coordinate lines, the doublet sine wave be broken up into piecewise linear segments
direction is chosen to be aligned with =j for computing j along which vortex filaments can be placed.
and =h for computing h. Values of j and h at every point The next case of interest is that of flow over an NACA
may be evaluated with Eq. (31) and an interpolation step 0012 airfoil where adaption is desired near the shock to
yields the final grid. The adaption to a shock-like disconti- reduce the inviscid shock mesh spacing. The grid genera-
nuity has been carried out in a square domain using 20 tion routine searches the domain during the solution proce-
doublets. The resulting grid is shown in Fig. 12. While the dure to locate the region where the pressure gradient is
grid points are seen to cluster near the desired region, large. A decision is then made to use either discrete vortex
there are spurious wiggles in the grid lines that violate the doublets or continuous filaments. In the present case, the
smoothness requirements. This is attributed to the discrete method is programmed to recognize a single straight line
placement of the doublets. In order to avoid this situation, starting from the boundary and terminating in the flow
we may replace these doublets with continuous vortex fil-
aments of opposing strengths that can be placed parallel
to each other in order to attract points smoothly from
either direction. The grid resulting from using continuous
vortex filaments is shown in Fig. 13.

The influence on a point due to a straight ‘‘vortex’’
filament that stretches between points 1 and 2 that is a
perpendicular distance h away at distance r(jL , hL) is easily
computed. If the influence of a small segment, ds, of the
line is given by

dj 5 k log S r
ro
D ds

then the net influence at a given point may be repre-
sented as

Dj 5 k Fs log(r) 2 s 1 h cos Sh
rD2 s log (ro)G2

1
.

FIG. 14. Distribution of 30 doublets.
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FIG. 17. Use of multiple filaments in a domain.

FIG. 15. Effect of orienting the doublets on orthogonality.

However, if the source term is harmonic, an extremum
cannot occur within the domain due to the max–min prop-domain that would approximate the shock location. Since

the transonic shock ends in the flow-field, the vortex fila- erty for harmonic functions. Such a function cannot be
used to obtain grid adaption interior to the domain. Atments must end within the flow-field. This causes the grid

lines to possess large curvature near the regions where the the same time, these functions can serve two important
purposes, adaption to the boundary and smoothing anvortex filament must end. In order to avoid this problem,

the filaments are chosen as convergent lines that meet near adapted grid.
A linear or piecewise linear variation of a source func-the point where the shock ends. The grid obtained for this

case is shown in Fig. 16. tion within the (jl , hL) space gives rise to adaption that
originates at the boundaries and goes all the way into theAn arbitrary number of vortex filaments can be placed

in the flow domain. An example of three filaments is repre- domain. Figure 18 shows adaption to the h 5 0 boundary
for the NACA 0012 airfoil by using a linear source functionsented in Fig. 17. Given the capability of vortex lines to

control adaption in an arbitrary problem, it remains to that vanishes at the upper boundary and reaches some
small positive value at the lower boundary.demonstrate the utility of adding continuous source func-

tions to the Poisson solver. In order to fit into the BEM The evaluation of the boundary integral is carried out,
for harmonic source functions, in several steps. This com-format, we require these source functions to be harmonic,

resulting in the biharmonic equation for grid generation. putation requires the gradient of the function, v*, normal

FIG. 16. Parallel and convergent vortex filaments.
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FIG. 18. Using a vortex line for boundary treatment.

to the boundary and the gradient of b normal to the bound- the Fourier series solution of Laplace’s equation. The fol-
lowing expressions may be used:ary. The first of these, =v*, is given by

=v* 5 F r
4f Slog

1
r

1 1D2
1

8frD er , b(jL , hL) 5
2

jmax
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sinh[(nf/jmax)hl]
sinh[hfhmax/jmax]

where er is the unit vector in the radial direction along the sin
fnjL

L
EL

0
f (jL) sin

nfjL

L
dx

line joining the point at which the computation is being
made to a point on the boundary. The determination of ­b

­hL
uhL5hmax

5
2nf
j 2

max
Oy

1

cosh[nfhmax/jmax]
sinh[hfhmax/jmax]=b is not as straightforward. The problem is simple if a

function b(jL , hL) is given. As noted earlier, such a specifi-
cation can be useful in many cases such as adaption to a

sin
nfjL

L
EL

0
f (jL) sin

nfjL

L
dx.boundary. In general, a harmonic source function cannot

be used for internal adaption. One must then resort to using
this for the second function mentioned above, namely,

This expression has been used to smooth the grid shownsmoothing an adapted grid. Consider the grid depicted in
in Fig. 17. The function f (jl), is identical to the boundaryFig. 17. The grid lines have been clustered near the linear
distribution of b discussed above. The Fourier series hasregion shown using vortex filaments. Such a grid can poten-
been truncated at three terms in the computation. Thetially be smoothed using a continuous source function that

is harmonic.
It is interesting to examine the construction of such a

continuous harmonic source function. Since the function
b is harmonic, the specification of its value on the boundary
completely determines the internal distribution. In Fig. 17,
we observe that the only region where b is required is near
the transonic shock. Thus, we can set the value of b to
zero everywhere else on the boundary. Since clustering is
required near the shock, we let b vary linearly from zero
to a small positive value k at the shock, where it must
change sign to 2k in order to attract points from both
directions. It then drops linearly to zero at the outer edge
as shown in Fig. 19.

With this boundary distribution of b, we can obtain an
FIG. 19. Distribution of a source function on a boundary.estimate of the normal derivative at the boundaries using
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ified near the regions where there is little or no activity.
Implicit approximations to the forcing functions P and Q
can possibly be obtained, thereby permitting integration
of the Poisson equation, resulting in a closed-form solution.
If piecewise harmonic functions are included, boundary-
point-dependent adaption is easily achieved.

The large number of parameters in the formulation can
be manipulated to obtain orthogonality and other grid
properties of practical interest. In addition, the interpolator
can serve as another degree of freedom in grid control.
Further study is necessary to understand the best way of
including the effects of orthogonality and smoothness in
this scheme. Linearity decouples the Poisson equations
totally so that the method has no dependence on the com-
plexity of the problem. CPU time should increase linearly
with each additional dimension or increasing grid size while

FIG. 20. Grid in Fig. 16 after adding continuous source terms.
any non-linear scheme proceeds along some higher expo-
nent of this CPU time.
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